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LE'lTER TO THE EDITOR 

A renormalisation group analysis of the semi-infinite Potts 
model 

R Lipowsky 
Sektion Physik der Ludwig-Maximilians-Univenitat, Munchen, West Germany 

Received 22 December 1981 

Abstract. We discuss the ordinary transition of the semi-infinite q-state Potts model within 
the Migdal-Kadanoff renormalisation group scheme. Approximate surface free energies 
are calculated in dimension D = 2. In addition, we consider the effect of symmetry breaking 
surface fields. Our scheme predicts that only one such field is relevant. 

We consider the q-state Potts model for a semi-infinite hypercubic lattice in D 
dimensions. On each lattice site i, we place a Potts spin variable ai = 1,2, . . . ,4. The 
set of all surface sites is denoted by A,. The Hamiltonian of this model is given by 

Ks i, i E A,, 
Kij'(K otherwise. 

( i j )  indicates a sum over nearest neighbours, and 6(ai, ai) is the Kronecker symbol 
which is 1 iff ai = ai and 0 otherwise. 

For q = 2, this model is equivalent to the semi-infinite Ising model. In this case, 
various methods have been used to calculate both the phase diagram as well as 
thermodynamic functions and scaling indices (e.g. Au Yang 1973, Binder and Hohen- 
berg 1974, Burkhardt and Eisenriegler 1977). Recently, we have shown that the 
simple Migdal-Kadanoff renormalisation group (MKRG) approach (Migdal 1975, 
Kadanoff 1976) is also adequate (Lipowsky and Wagner 1981). Similar approaches 
have been used independently by Nagai and Toyonaga (1981) and by Parga and van 
Himbergen (1981). 

For 4 b 3, we naively expect that the phase diagram in the (K, K,) plane is similar 
to the corresponding phase diagram of the Ising model: for 0 = 2, the system should 
undergo an ordinary transition, while for D = 3, there should be a surface, an ordinary, 
a surface-bulk or special, and an extraordinary transition (for the terminology in the 
Ising case, see e.g. Burkhardt and Eisenriegler (1977)). For 4 P 3, however, these 
phase transitions may be either continuous or discontinuous. For instance, for 4 = 3, 
4 and 0 = 3  we expect that the surface transition is continuous while the other 
transitions are discontinuous. In addition, a new type of phase transition occurs for 
large 4 (Lipowsky 1981 a,b). At this new transition, the surface order parameter 
jumps while the bulk order parameter varies smoothly. 
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In this Letter, we apply the MKRG scheme as described in Lipowsky and Wagner 
(1981) for the semi-infinite Ising model to model (1). It is well known that this scheme 
yields a continuous bulk transition for all finite 4 and D > 1. A discontinuous bulk 
transition is obtained only in the many-component limit 4 -* CO (Berker and Ostlund 
1979). However, it is known exactly that this bulk transition is discontinuous for 4 > 4 
in D = 2 (Baxter 1973). In addition, both recent field theoretic RG calculations 
(Aharony and Phytte 1981) and position-space RG calculations for the dilute Potts 
model (e.g. Nienhuis et a1 1981) indicate that the three-dimensional bulk transition 
is discontinuous for 4 3 3. Therefore, we will mainly discuss the case D = 2 and 4 = 3,  
4 where the MKRG scheme yields the correct nature of the bulk transition. The MKRG 
analysis for the many-component limit 4 -* 00 of model (1) is discussed elsewhere 
(Lipowsky 198 la). 

Within the MKRG scheme, we obtain the following differential recursion relations: 

dK/dl= (D - l)K - B4(K)/4, 

dKJdl =iK +(D -2)Ks-Bq(Ks)/q,  

Bq(x) = [e" +(1 -q)e-" + q  -21 ln[l+q/(e" - l)]. 

The bulk recursion relation (2a )  yields the exact critical coupling K"  = In( 1 + Jq) 
(Stephen 1976). This is due to the fact that the differential MKRG transformation and 
the duality transformation commute. The phase diagram obtained from (2 )  for D = 2 
and 4 = 3 , 4  is similar to the phase diagram of the semi-infinite Ising model as expected. 
There is only one non-trivial fixed point (K', K : )  on which the line K = K' associated 
with the ordinary transition is mapped under the RG. At this fixed point, the linearised 
recursion relations lead to one relevant and one irrelevant temperature-like perturba- 
tion corresponding to 6K: = K - K' and SK,: = K, - K,' respectively. 

For D = 2 and 4 3 4* = 41, (2)  yields an additional multicritical fixed point with 
two relevant temperature-like perturbations. This fixed point is rather unexpected. 
However, it is related to a genuine structure of the phase diagram of model (1). A 
mean field analysis shows that there is a new type of phase transition for large 4 in 
the low-temperature regime K > K' (Lipowsky 1981b). At this new transition, the 
surface order parameter jumps while the bulk order parameter varies smoothly. In 
the extreme case 4 +a, this leads to a low-temperature phase where the surface spins 
are completely uncorrelated (Lipowsky 1981a). 

Next, we calculate approximate bulk and surface free energies within the MKRG 
approach. The approximate bulk free energy fB(K) is given by the trajectory integral 
(cf Lipowsky and Wagner 1981) 

m 

f B ( K )  = D [ dl e-D' gq[Z(l, K ) ]  
Jo 

where Z(l,  K) is the solution of (2a )  with the initial condition R(0, K) = K and 

g&) = (01 In 01 - W Z  In w2)/4, (3b)  

w l I z  are the eigenvalues of the transfer matrix for the one-dimensional bulk problem. 
In (3a), we have used the boundary condition 

w 1  =ex + 4 -  1, w2 = e" - 1. 
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From (3a), one obtains 

In q + DK/q K + 0 ,  
K-*0O, fB(K) -* ( DK (4) 

which is the exact asymptotic behaviour for all q and D. In the two-dimensional king 
model (q = 2), we compared the approximate fB(K) obtained via (3a) with the exact 
fB(K) which is known for all K. In this case, the relative error is less than 3% over 
the whole temperature region (1 ipowsky and Wagner 1981). The maximum of the 
relative error occurs at K = K'. F w  q L 3 and D = 2, only fB(K = K') is known exactly 
(Baxter 1973). From (3) and ( 2 ~  , we obtain the approximate value 

fB(K') = 1 In q + [( 1 + &)/&I In( 1 + 4) (5a) 
in D = 2.  For 4 = 3 and 4, (5a) ykldSfB(K') = 2.13 and 2.34 which should be compared 
with the exact values fB(K') = 2.07 and 2.26 respectively. Thus, the relative error is 
less than 4%. From (3) and (2a), we may also obtain an approximate bulk energy 
eB := -dfe/dK at the transition temperature: 

EB(K') = -(1+ l/G). (56) 

The approximate surface free energy f,(K, K,) is given by the trajectory integral 
For q = 2 ,  (56) is exact (cf e.g. McCoy and Wu 1973). 

m 

fAK, Ks) = dl e-(D-l)lGEK(l, K ) ,  K d ,  K, K,)I+ CAK, K,> (6a 1 

with 

G(K, KJ = (D - l)[gq(KJ - &  (K)I + & ~ B ( K )  -gq (K)I (66) 
WherefB(K) and g q ( x )  are given by (3a) and (36) respectively. We choose the boundary 
condition 

C,(K, KJ := lim e-(D-l)y,(l) 
1-a0 

K < K ' ,  
+@/ (D - 1) K > K', 

as in the Ising case (Lipowsky and Wagner 1981). 

fs(K' K s ) + (  ( D - l ) ( - K + K S ) - K / 2  

In the low- and high-temperature limits one finds from (6a) 

[ (D - I)(-K +Ks)-K/21/q K, Ks + 0, 
K, Ks + 00, 

which is the exact asymptotic behaviour for all q and D. For intermediate coupling 
constants, we may calculate the trajectory integral (6a) numerically. In figure l(a), 
we depict the surface free energies f, for q = 3 along the temperature trajectories 
(K, K, = yK)  with y =b, 1, 8 and 2 .  In figure l(b), we compare the surface free 
energies f, with y = l  for 4=2, 4 and 10. The surface free energy Ts of the 
two-dimensional Ising model with y = 1 is obtained via 

YAJ, Js = J )  = f , (K = 2J, Ks = 2J.; q = 2)+$J - J,. (7) 
The function fs is known exactly (McCoy and Wu 1973). It has been discussed 
previously within the MKRG scheme (Lipowsky and Wagner 1981). Note that the 
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Figure 1. Surface free energies f, for various values of q and y = K J K  as obtained from 
the MKRG. The critical coupling constants K‘(q) are indicated by small arrows. 

surface free energies shown in figure 1 are neither convex nor concave. This is not 
an artefact of the approximation but holds also for the exact function fs. 

Near to K = K‘, the surface free energy scales like fs = IK -K‘I” for 4 = 2, 3 and 
4 where v is the critical exponent of the correlation length. This implies that the 
surface energy E ~ : =  -df,/dK behaves like E ~ =  IK -KCIy-’. For 4 = 2 (Ising case), 
Y = 1 and the exact surface energy has a logarithmic divergence (McCoy and Wu 
1973). For 4 = 3 and 4, it is now believed that v = 2 and 5 respectively (see e.g. 
Nienhuis et al 1981). Thus, for 4 = 3,4,  e s  should diverge even stronger than in the 
Ising case. In the MKRG scheme, the approximate value for Y is larger than 1 in all 
three cases. Thus, the MKRG yields only a cusp. 

Finally, we consider the effect of symmetry breaking fields on model (1). In the 
Ising case (4  = 2), one bulk and one surface field are relevant at the ordinary transition. 
The corresponding scaling indices Y h  and Y h l  are known exactly in D = 2: y h  = $ and 
Y h l  = 5 (McCoy and Wu 1967). In the MKRG approach, these scaling indices are given 
by Y h  = 1.88 (Migdal 1975) and by y h l  = 0.44 (Lipowsky and Wagner 1981). 

For 4 2 3, two symmetry breaking fields are relevant in the bulk problem. This 
has been discussed within the MKRG scheme by Berker and Ostlund (1979). In the 
semi-infinite case, we must add the following term to the Hamiltonian ( l a ) :  

CHiS(ai,  I )+  C LijS(aii, 1)  S(aji, 11, (8a 
i (ii) 

i E & ,  

otherwise, 

If we did not include the Lij terms from the outset they would have been generated 
by the first MKRG step via the one-dimensional decimation. Within the MKRG, no 
other terms are generated due to the bond moving approximation. 
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We consider the two-dimensional case and linearise the recursion relations of the 
MKRG scheme around the fixed point (K", KZ). For finite rescaling factor b, these 
linearised recursion relations have the structure 

where the crosses indicate non-vanishing matrix elements which affect the eigenvectors 
but do not enter the eigenvalues w,, CY = 1,2 , .  . . ,6.  01 corresponds to the tem- 
perature-like perturbation SK = K - K" and 

= ${PI + P 4  f [ (Pi  - P4l2 4- 

correspond to the symmetry breaking bulk fields H and L. w4 corresponds to the 
temperature-like perturbation SK, = K, - K,' and 

1 
w5/6 = z{h1+ X4f [(hi - h4)2 + 4h2X3]1/2} 

correspond to the symmetry breaking surface fields H, and L,. The scaling indices 
yp are given by ya =In w,/ln b. For b = 2, the bulk indices y1 and y2/3 have been 
calculated previously (Berker and Ostlung 1979). All bulk indices are positive. Thus, 
both symmetry breaking bulk fields are relevant as mentioned above. In contrast, 
only one surface index, namely y5,  is positive while y4 and y6 are negative. Thus, the 
MKRG scheme predicts that only one symmetry breaking surface field is relevant. For 
b = 2, we obtain the approximate values y s  = 0.36 and 0.31 for 4 = 3 and 4 respectively. 

The author thanks H Wagner for helpful discussions and a critical reading of the 
manuscript. 
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